IN.PACT DCB

Science Behind the Outcomes

Ravish Sachar MD FACC Physician-in-Chief, Heart and Vascular Service Line UNC-REX Hospital University of North Carolina Raleigh, NC

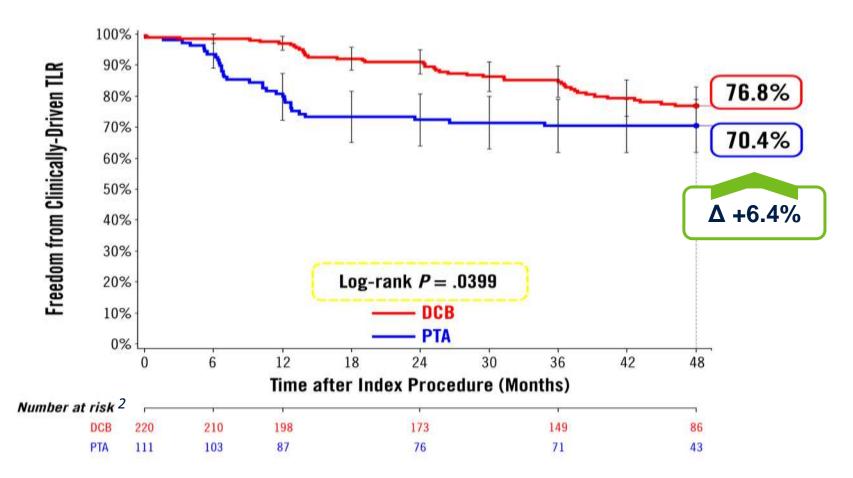
DC00062713


SFA Treatment

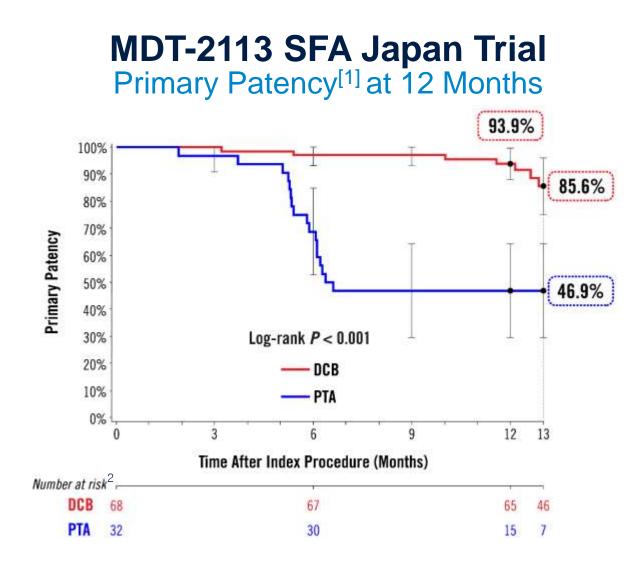
- SFA disease remains a challenge to manage with no uniformly accepted evidence-based standard
- PTA is associated with high incidence of restenosis when used for anything but focal, noncomplex lesions
- Reported long-term patency rates with stents range from 60-75%,^{1,2} but concerns persist about in-stent restenosis and stent fractures
- While drug-coated balloons (DCBs) have demonstrated promising results at 1- and 2-years in randomized trials,³⁻⁵ long-term data for commercially available DCBs are limited.
- 1. Dake MD, et al. J Am Coll Cardiol 2013;61:2417-27.
- 2. Rocha-Singh KJ, et al. Catheter Cardiovasc Interv 2015;86: 164-70.
- 3. Presented by Laurich C, SVS Chicago, USA 2015.
- 4. Laird J, et al., J Am Coll Cardiol 2015;66:2329-38.
- 5. Presented by Brodmann M, VIVA Las Vegas, USA 2017.

IN.PACT DCB SFA Clinical Program

Robust Adjudicated Series of 1837 Subjects


IN.PACT SFA Trial: Primary Patency¹ through 3 Years

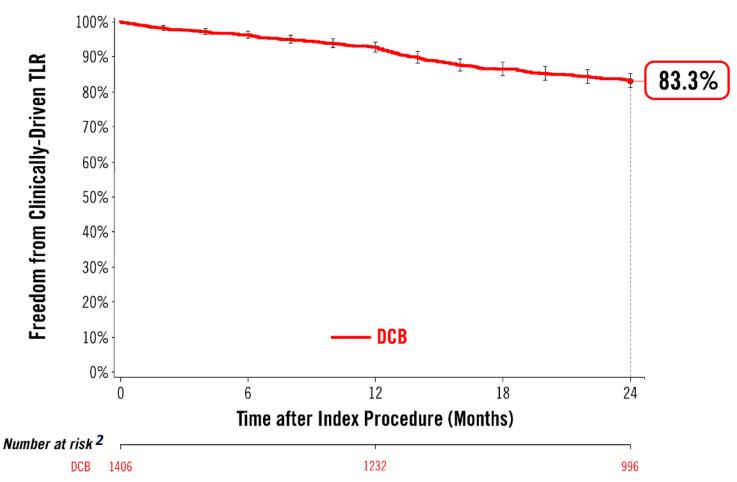
1. Freedom from core laboratory-assessed restenosis (duplex ultrasound PSVR ≤2.4) or clinically-driven target lesion revascularization through 36 months (adjudicated by a Clinical Events Committee blinded to the assigned treatment).


2. Number at risk represents the number of evaluable subjects at the beginning of each 30-day window.

IN.PACT SFA Trial: Freedom from CD-TLR¹ through 4 Years

1. Clinically-driven TLR adjudicated by an independent Clinical Events Committee, blinded to the assigned treatment based on any re-intervention at the target lesion due to symptoms or drop of ABI of ≥20% or >0.15 when compared to post-procedure baseline ABI.

2. Number at risk represents the number of evaluable subjects at the beginning of each 30-day window.



1. Freedom from core laboratory-assessed restenosis (duplex ultrasound PSVR ≤2.4) and clinically-driven target lesion revascularization through 12 months (adjudicated by a Clinical Events Committee blinded to the assigned treatment)

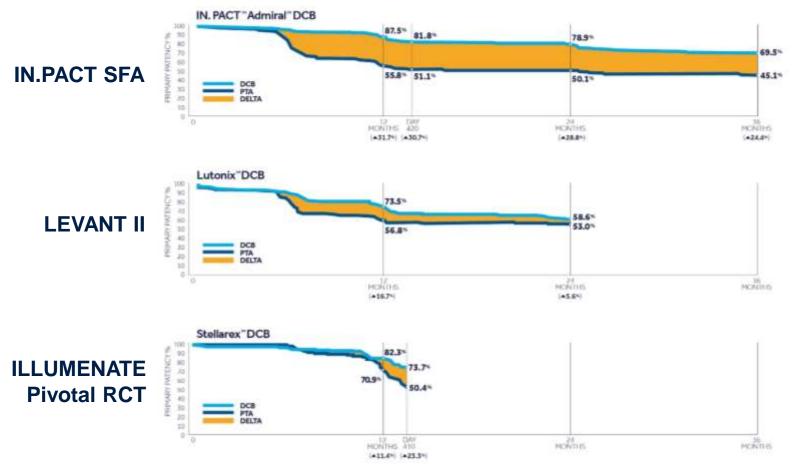
DC00062716

2. Number at risk represents the number of evaluable subjects at the beginning of the 30-day window prior to each follow-up interval

IN.PACT Global Study: 24-month Freedom from CD-TLR¹

1. Clinically-driven TLR adjudicated by an independent Clinical Event Committee, based on any re-intervention at the target lesion due to symptoms or drop of ABI of ≥20% or >0.15 when compared to post-procedure baseline ABI.

2. Number at risk represents the number of evaluable subjects at the beginning of each 60-day window.


12-month Results across IN.PACT Admiral DCB Clinical Studies

	RCTs		Pivotal	GLOBAL						
			Registration Study		Pre-Specified Imaging Cohorts				Regional Subset	
	IN.PACT SFA ¹	IN.PACT Japan ²	IN.PACT China ³	IN.PACT Global⁴	IN.PACT Global Long Lesion Imaging Cohort ⁵	IN.PACT Global ISR Imaging Cohort ⁶	IN.PACT Global CTO Imaging Cohort ⁷	IN.PACT Global Belgium Subset ⁸	IN.PACT Global ASEAN Subset ⁹	
Ν	220	68	143	1406	157	131	126	305	114	
Lesion Length (Mean ± SD, cm)	8.9 ±4.5	9.2 ± 5.9	10.4 ± 6.5	12.1 ± 9.5	26.4 ± 8.6	17.2 ± 10.5	22.8 ± 9.8	9.5 ± 7.9	17.4 ± 12.3	
Primary Patency (KM @ 360 days)	87.5%	93.9%	90.9%	NA	91.1%	88.7%	85.3%	NA	NA	
Primary Safety Endpoint	95.7%	95.6%	99.3%*	92.1%	94.0%	91.1%	87.7%	90.6%	96.2%	
CD-TLR	2.4%	2.9%	2.9%	7.5%	6.0%	7.3%	11.3%	7.6%	2.9%	
Major Target Limb Amputation	0.0%	0.0%	0.0%	0.2%	0.0%	0.0%	0.0%	0.7%	0.0%	
Thrombosis	1.4%	0.0%	2.2%	2.9%	3.7%	0.8%	4.3%	3.8%	0.9%	
 lida et al., JEVT 2018 Chen, Z, VEITH 2017 Jaff, M. VIVA 2016 	2. lida et al., JEVT 2018 7. Tepe, G. Charing Cross 2016 3. Chen, Z, VEITH 2017 8. DeLoose, K LINC 2017									

5. Scheinert, D. EuroPCR 2015.

*30-day Safety composite

DCB Pivotal Trial Comparisons: Primary Patency of FDA-Approved DCBs¹

- 1. Primary patency and target lesion revascularization (TLR) rates may be calculated differently, and therefore may not be directly comparable; chart is for illustration only.
- IN.PACT SFA Trial values represent IN.PACT™ Admiral™ DCB arm as evaluated by 36-mo Kaplan-Meier, patency defined as PSVR ≤ 2.4 and freedom from TLR defined here as clinicallydriven TLR; IN.PACT Admiral Instructions for Use M052624T001 Rev 1F.
- 3. LEVANT II values represent Lutonix 035 arm as evaluated by 730-day Kaplan-Meier, patency defined as PSVR ≤ 2.5 and freedom from TLR defined here as all TLR; Lutonix 035 Instructions for Use BAW1387400r3..
- ILLUMENATE RCT Pivotal values represent Stellarex as evaluated by 410-day Kaplan-Meier, patency defined as PSVR ≤ 2.5 and freedom from clinically-driven TLR; Stellarex Instructions for Use No. P011966-C Rev 07/2017.

Drug-Coated Balloons Seeing the Differences through the Mechanisms of Action

Drug-Coated Balloon (DCB) System

IN.PACT™ Admiral™ DCB

Platform	Admiral [™] PTA balloon 4-7 mm diameters 40, 60, 80, 120, 150 mm lengths ¹			
Drug	Paclitaxel Proven anti-proliferative drug 3.5 µg/mm ²			
Excipient	Urea Facilitates drug transfer Naturally occurring, non-toxic			
Process	Medtronic Reliable, scalable, uniform drug coating process			

1. The IN.PACT[™] Admiral[™] 120 and 150 mm long balloons have 4,5 & 6 mm diameters only.

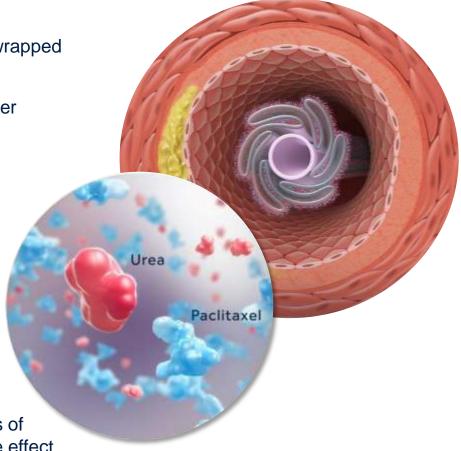
Medtronic

DC00062713

Key Elements of IN.PACT[™] Admiral[™] Design Providing over 180 days of Therapeutic Drug Levels¹

Balloon

- Coated with matrix in semi-inflated state, then wrapped
- Protects majority of matrix within folds
- Moderates urea dispersion and paclitaxel transfer


Urea

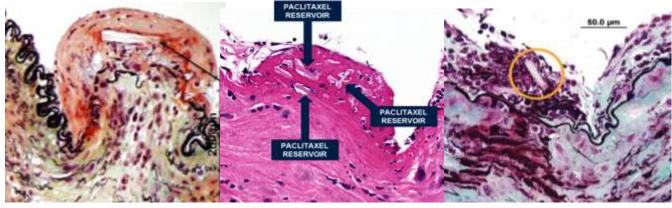
- Naturally occurring molecule
- Hydrates during contact with blood
- Facilitates drug transfer

Paclitaxel

- Proven anti-proliferative drug
- 3.5 μg/mm²
- Embedded solid phase drug provides reservoirs of soluble phase drug which exert anti-proliferative effect

1. Data on file at Medtronic (GLP Study FS208; GLP Study PS516).

Design Summary of the FDA-Approved DCBs


Excipient is critical in delivering and sustaining paclitaxel in the tissue.

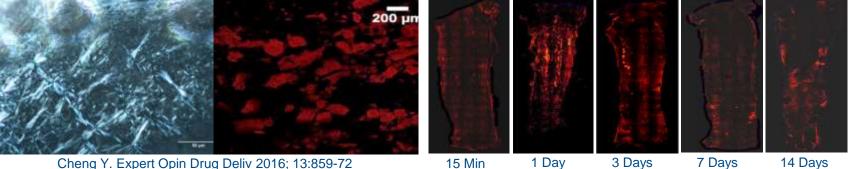
- All three devices use paclitaxel dosing significantly lower than other medical applications¹
- Excipient is unique to each DCB

	Drug (Dose)	Excipient			
IN.PACT™ Admiral™ DCB	Paclitaxel (3.5µg/mm ²)	Urea			
Lutonix ^{™*} 035 DCB	Paclitaxel (2.0µg/mm ²)	Polysorbate-Sorbitol			
Stellarex ^{™*} DCB	Paclitaxel (2.0µg/mm ²)	Polyethylene Glycol			

1. Ng, Vivian. Eur J Clinical Investigation 2015;45(3):333-345

Proposed Mechanism of **Action**

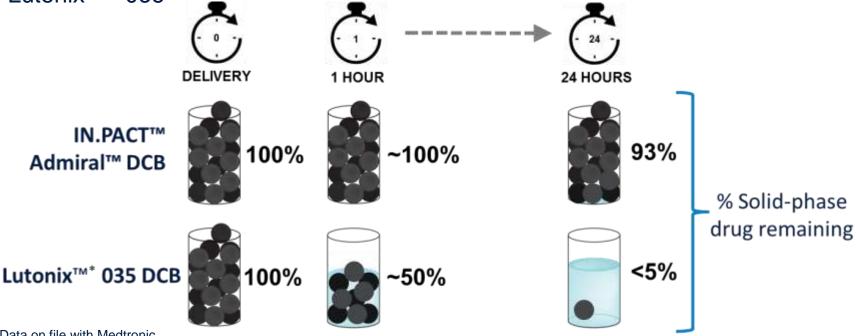
PACCOCATH (2009) Granada JF. Open Heart. 2014 **IN.PACT**


STELLAREX

Particle Type, Adhesion and Solubility Determines Tissue **Pharmacokinetics**

STELLAREX (SPECTRANETICS)

DC00062716

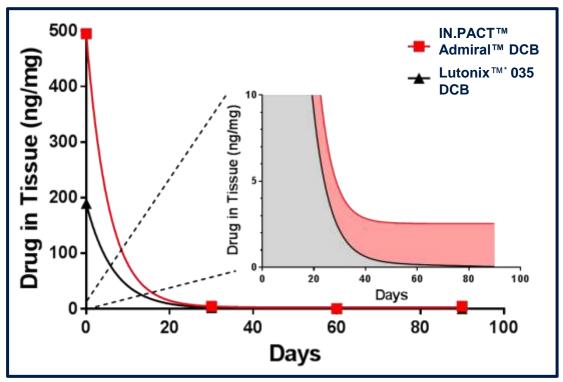


Cheng Y. Expert Opin Drug Deliv 2016; 13:859-72

Solid-Phase Drug Transition

Transition from solid- to soluble-phase is different through 24 hours.¹⁻²

- Bench-top porcine plasma model reveals that both devices transfer solid-phase paclitaxel from the DCB
- Subsequent transition from solid-phase to soluble-phase occurs at different rates
- At 24 hours, IN.PACT[™] Admiral[™] DCB retains more drug in solid-phase than Lutonix[™]* 035

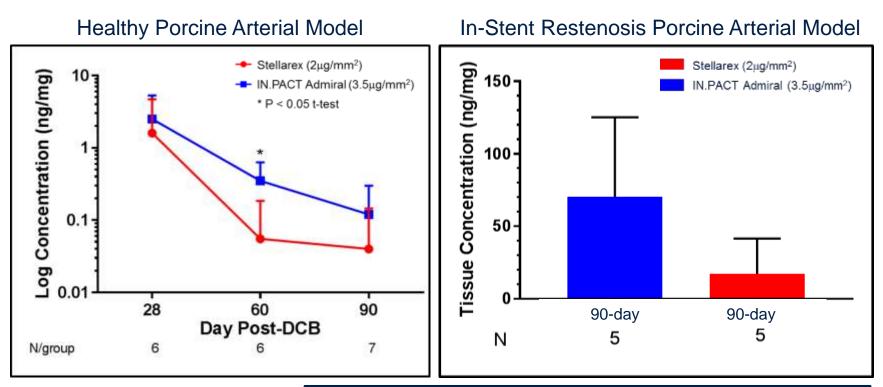


1. Data on file with Medtronic.

2. Virmani R, "Arterial wall response to drug-coated balloon use" presented at Charing Cross, London 2016.

Sustained Drug Availability

Higher percentage of solid-phase drug is associated with higher drug tissue concentration through 90 days.¹⁻²

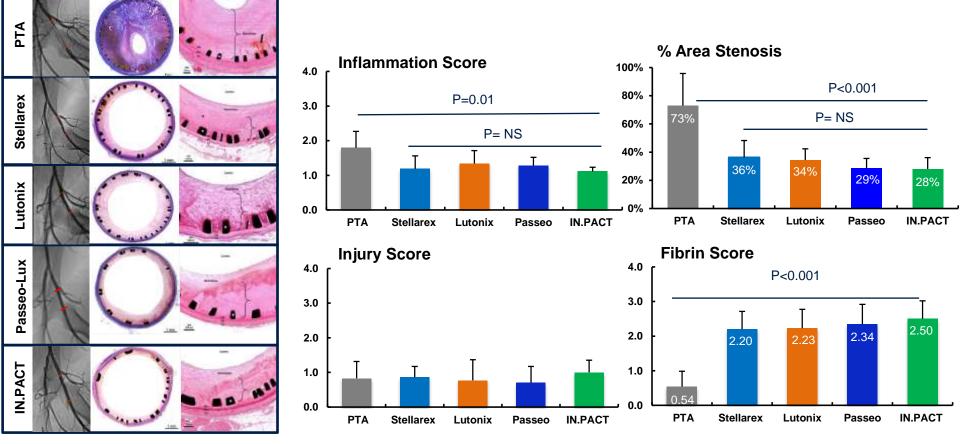

In vivo porcine model used to quantify sustained drug residence in tissue

1.Data on file with Medtronic; Study PS747.

2. Virmani R, "Arterial wall response to drug-coated balloon use" presented at Charing Cross, London 2016.

Sustained Drug Availability

Different tissue drug concentrations are also demonstrated in a similar head-to-head experiment as well as porcine arterial neointima model.^{1,2}

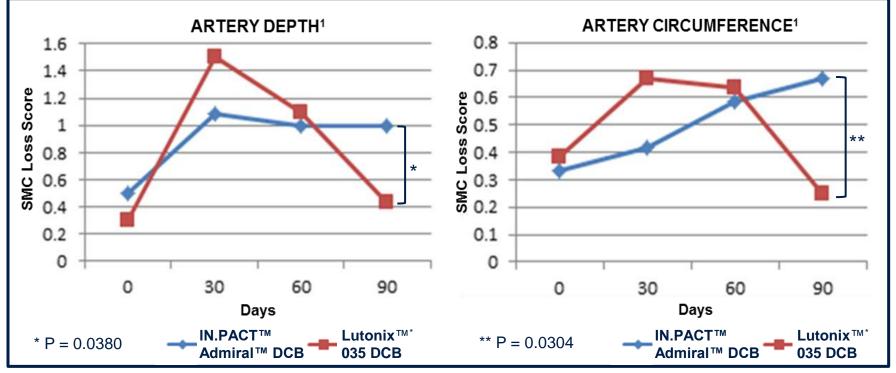


Higher input drug concentration facilitates greater long-term concentrations.

1.Data on file with Medtronic; Study PS767. 2.Data on file with Medtronic; Study PS781.

<u>SHORT-TERM</u> Restenosis Prevention Following DCB Treatment in the FHS Model of SFA-ISR

28-Days Following ISR Treatment

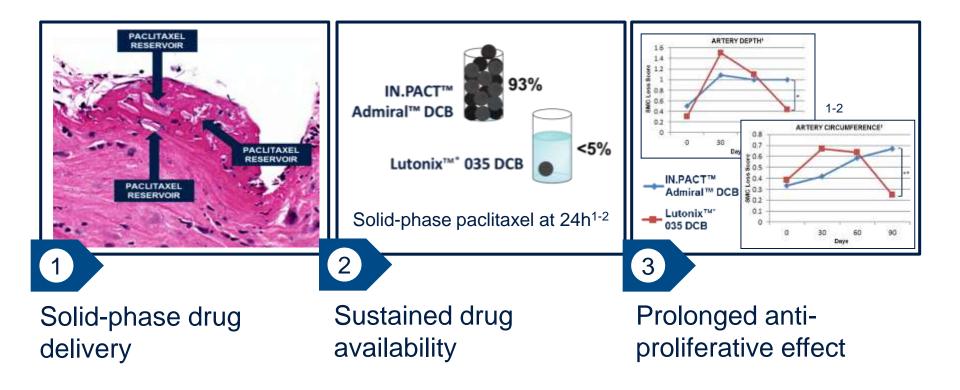


Data Courtesy of Cheng YP. Skirball Center for Innovation 2017

DC00062716

Prolonged Anti-Proliferative Effect

Higher percentage of solid-phase drug is associated with continued trend of smooth muscle cell loss through 90 days.¹⁻²



In vivo porcine model used to quantify smooth muscle cell loss through 90 days

1. Data on file with Medtronic; PS747.

2. Virmani R, "Arterial wall response to drug-coated balloon use" presented at Charing Cross, London 2016.

Keys to Sustained Effect

1. Data on file with Medtronic. Ninety-day differences in artery depth delta and artery circumference demonstrate p=0.0380 and p=0.0304, respectively (right panel).

2. Virmani R, "Arterial wall response to drug-coated balloon use" presented at Charing Cross, London 2016.

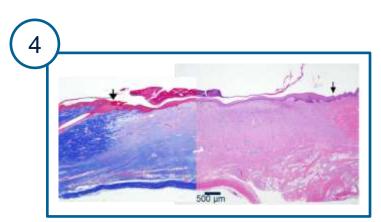
Medtronic

DC00062716

Key Safety Metrics: 12-Month FDA-Approved DCB Cohorts

	LEVANT II ¹		Global ²	IN.PACT	SFA ³	Global Clinical Cohort ⁴	EU	RCT ⁵	US P	ivotal ⁶	Global ⁷
	ΡΤΑ	Lutoi	nix 035	ΡΤΑ	IN.PACT Admiral		ΡΤΑ	Stellarex	ΡΤΑ	Stellarex	Stellarex
Subjects	160	316	691	111	220	1406	72	222	100	200	371
All Thrombosis				3.7% (4/107)	1.4% (3/207)	2.9% (38/1311)			0.0% (0/95)	1.1% (2/189)	
Revasc. due to Thrombosis	0.7% (1/140)	0.4% (1/285)	1.3% (8/634)								
Major Amputation	0.0% (0/140)	0.3% (1/286)	0.5% (3/635)	0.0% (0/107)	0.0% (0/207)	0.2% (3/1311)	0.0% (0/60)	0.0% (0/204)	0.0% (0/95)	0.0% (0/189)	17

Consistently low frequency of thrombosis and major amputation across platforms.


Does distal downstream particle embolization impact wound healing and could affect clinical outcomes?

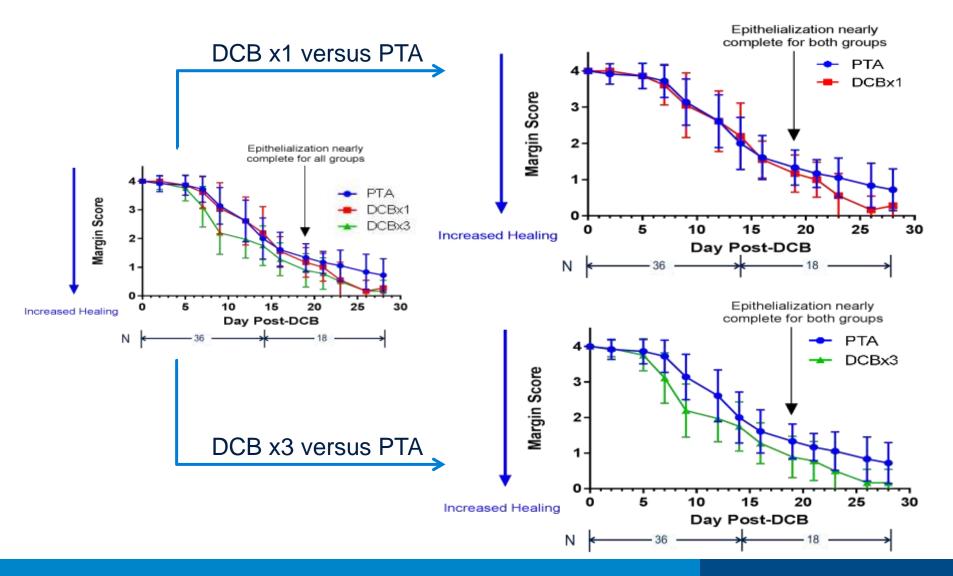
Paclitaxel Effect on Wound Healing Experimental Design

- 1. Wound creation
- 2. Bilateral treatment PTA or DCB x1 or DCB x3
- 3. Clinical assessment

Scoring and wound care (dressing change) three times per week

4. Termination (14 and 28 days)
 Histopathological assessment
 Quantification of drug in tissue

Wound Healing Clinical Evaluation


Wound healing (Three times per week)

- Modified Draize wound healing score rank (0-4)
- Modified Hollander Cosmesis score rank (0-4)

Histopathology (14 & 28 days)

- Re-epithelialization
- Collagen deposition or scar formation
- Neovascularization or granulation
- Wound contraction and/or inflammation

Wound Healing Hollander Score: Direct Indicator of Wound Closure

Conclusions

- There does not appear to be a Class Effect in DCBs
- The In.Pact Admiral is the only DCB to demonstrate a superior treatment effect over PTA through four years
- Continued safety of IN.PACT[™] Admiral[™] DCB through <u>four years</u>
- The ability to maintain a sustained biological response over time appears to be the main driver of clinical success of DCBs
- Not only paclitaxel dosing but also particle solubility are important technological drivers to achieve long-term suppression of restenosis
- Particulate embolization does not seem to affect wound healing at the experimental level, its effect in humans requires further studies

Thank You!

